Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
Have you met this question in a real interview?
Yes
Example
Given:
start =
end =
dict =
start =
"hit"
end =
"cog"
dict =
["hot","dot","dog","lot","log"]
Return
[ ["hit","hot","dot","dog","cog"], ["hit","hot","lot","log","cog"] ]
这道题写起来长,但其实一点都不难。只要领悟以下几个关键点:
1 因为要找最短路径,所以果断用bfs
2 要求返回所有可能的解,所以要记录层数,直到把最短路径答案所在的那一层全部试过为止
3 每个最终解都是一个path,每个节点都指向他的上一层。所以最好自己建一个数据结构
4 用过一个中间string就把它从dict里删除,因为最短路径里不可能包含一个重复的string
另外自己写code中会碰到很多可以优化的地方,所以最好还是自己写一遍哦 ^_^
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
public class Solution { | |
/** | |
* @param start, a string | |
* @param end, a string | |
* @param dict, a set of string | |
* @return a list of lists of string | |
*/ | |
public List<List<String>> findLadders(String start, String end, Set<String> dict) { | |
// write your code here | |
List<List<String>> res = new ArrayList<List<String>>(); | |
ArrayList<Cell> qualified = new ArrayList<Cell>(); | |
dict.add(start); | |
Queue<Cell> queue = new LinkedList<Cell>(); | |
queue.add(new Cell(start, 0)); | |
int minLevel=Integer.MAX_VALUE; | |
boolean found = false; | |
while(!queue.isEmpty()){ | |
Cell cur = queue.poll(); | |
if(cur.level > minLevel) break; | |
dict.remove(cur.word); | |
char[] chars = cur.word.toCharArray(); | |
for(int i=0; i<chars.length; i++){ | |
char origin = chars[i]; | |
for(char c='a'; c<='z'; c++){ | |
chars[i] = c; | |
String temp = new String(chars); | |
if(temp.equals(end)){ | |
found = true; | |
minLevel = cur.level; | |
Cell solution = new Cell(temp, cur.level+1); | |
solution.previous = cur; | |
qualified.add(solution); | |
break; | |
}else if(dict.contains(temp)){ | |
Cell next = new Cell(temp, cur.level+1); | |
next.previous = cur; | |
queue.add(next); | |
} | |
} | |
chars[i] = origin; | |
} | |
} | |
for(Cell cell:qualified){ | |
ArrayList<String> list = new ArrayList<String>(); | |
while(cell !=null){ | |
list.add(0, cell.word); | |
cell = cell.previous; | |
} | |
res.add(list); | |
} | |
return res; | |
} | |
class Cell{ | |
String word; | |
Cell previous=null; | |
int level; | |
public Cell(String word, int level){ | |
this.word = word; | |
this.level = level; | |
} | |
} | |
} |
No comments:
Post a Comment